The fastest generic algorithms for any distributions
Heat Bath and Hasting Methods for Sπn Systems
|   | 
	  | 
	  | 
	  | 
|   | 
	 
		 
			 | 
	
			 | 
	  | 
|   | 
	 
		 
			 Blume-Capel model  | 
	
			 | 
	  | 
|   | 
	 
		 
			 | 
	
			 | 
	  | 
|   | 
	 
		 
			 | 
	
			 | 
	  | 
|   | 
	 
		 
			 | 
	
			 | 
	  | 
|   | 
	 
		 
			 | 
	
			 | 
	  | 
|   | 
	 
		 
			 Gauge theory  | 
	
			 | 
	  | 
|   | 
	 
		 
			 | 
	
			 = eh.x.dx  | 
	  | 
|   | 
	 
		 
			 | 
	
			 .e h.x.cos(π.z)- x2- λ.(x2-1)2 = e h.x.y - x2- λ.(x2-1)2.dx.dy.du  | 
	  | 
|   | 
	 
		 
			 | 
	
			 = sqrt(1-x2).eh.x.dx  | 
	  | 
|   | 
	 
		 
			 | 
	
			 = (1-x2)(N-3)/2.eh.x.dx  | 
	  | 
|   | 
	 
		 
		 | 
	
			 = (1-x2)(N-3)/2.dx...  | 
	  | 
|   | 
	 
		 
		 | 
	
			 .sinN-3(π.z).dz... = rN-1.dr.(1-x2)(N-3)/2.dx...  | 
	  | 
|   | 
	 
		 
		 | 
	
			 = (sqrt(1-x2))H-1.xM.dx  | 
	  x → [-1<xini:xfin<1[ H=real≥1 M=even integer  |