The fastest generic algorithms for any distributions
Heat Bath and Hasting Methods for Sπn Systems
| |
|
|
|
| |
|
|
|
| |
Blume-Capel model |
|
|
| |
|
|
|
| |
|
|
|
| |
|
|
|
| |
|
|
|
| |
Gauge theory |
|
|
| |
|
= eh.x.dx |
|
| |
|
.e h.x.cos(π.z)- x2- λ.(x2-1)2 = e h.x.y - x2- λ.(x2-1)2.dx.dy.du |
|
| |
|
= sqrt(1-x2).eh.x.dx |
|
| |
|
= (1-x2)(N-3)/2.eh.x.dx |
|
| |
|
= (1-x2)(N-3)/2.dx... |
|
| |
|
.sinN-3(π.z).dz... = rN-1.dr.(1-x2)(N-3)/2.dx... |
|
| |
|
= (sqrt(1-x2))H-1.xM.dx |
x → [-1<xini:xfin<1[ H=real≥1 M=even integer |